Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti.
نویسندگان
چکیده
The mechanisms of K(+) entry from the hemolymph into principal cells of Malpighian tubules were investigated in the yellow fever mosquito, Aedes aegypti. The K(+) channel blocker Ba(2+) (5 mmol l(-1)) significantly decreased transepithelial (TEP) fluid secretion (V(s)) from 0.84 nl min(-1) to 0.37 nl min(-1) and decreased the K(+) concentration in secreted fluid from 119.0 mmol l(-1) to 54.3 mmol l(-1) with no change in the Cl(-) concentration. Even though the Na(+) concentration increased significantly from 116.8 mmol l(-1) to 144.6 mmol l(-1), rates of TEP ion secretion significantly decreased for all three ions. In addition, Ba(2+) had the following significant electrophysiological effects: it depolarized the TEP voltage (V(t)) from 19.4 mV to 17.2 mV, increased the TEP resistance (R(t)) from 6.4 kOhmscm to 6.9 kOhmscm, hyperpolarized the basolateral membrane voltage of principal cells (V(bl)) from -75.2 mV to -88.2 mV and increased the cell input resistance from 363.7 kOhms to 516.3 kOhms. These effects of Ba(2+) reflect the block of K(+) channels that, apparently, are also permeable to Na(+). Bumetanide (100 micro mol l(-1)) had no effect on TEP fluid secretion and electrical resistance but significantly decreased TEP K(+) secretion, consistent with the inhibition of electroneutral Na(+)/K(+)/2Cl(-) cotransport. TEP Na(+) secretion significantly increased because other Na(+) entry pathways remained active. Bumetanide plus Ba(2+) completely inhibited TEP electrolyte and fluid secretion, with fast and slow kinetics reflecting the Ba(2+) block of basolateral membrane K(+) channels and the inhibition of Na(+)/K(+)/2Cl(-) cotransport, respectively. The single and combined effects of Ba(2+) and bumetanide suggest that (1) K(+) channels and Na(+)/K(+)/2Cl(-) cotransport are the primary mechanisms for bringing K(+) into cells, (2) K(+) channels mediate a significant Na(+) influx, (3) Na(+) has as many as four entry pathways and (4) the mechanisms of TEP K(+) and Na(+) secretion are coupled such that complete block of TEP K(+) renders the epithelium unable to secrete Na(+).
منابع مشابه
Malpighian tubules of the yellow fever mosquito Aedes aegypti, the inhibition of oxidative phosphorylation with dinitrophenol brings transepithelial electrolyte and water secretion immediately to a halt and eliminates voltages across cell membranes and the whole epithelium (Beyenbach,
movement of ions, organic solutes and water across the epithelium, but what drives transport is ultimately metabolism. The latter has not received much attention in studies of epithelial transport. However, metabolism and transepithelial transport must be intimately coupled, especially in actively transporting epithelia, such as Malpighian tubules. Indeed, in Malpighian tubules of the yellow fe...
متن کاملThe V-type H(+)-ATPase in Malpighian tubules of Aedes aegypti: localization and activity.
The V-type H(+)-ATPase is thought to provide the driving force for transepithelial electrolyte and fluid secretion in Malpighian tubules. To confirm the presence of this proton pump in Malpighian tubules of the yellow fever mosquito Aedes aegypti, we used several antibodies raised against the V-type H(+)-ATPase of Manduca sexta. Western blot analysis confirmed the presence of the V-type H(+)-AT...
متن کاملThe Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti
BACKGROUND The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (A...
متن کاملLeucokinin activates Ca(2+)-dependent signal pathway in principal cells of Aedes aegypti Malpighian tubules.
The role of Ca(2+) in mediating the diuretic effects of leucokinin-VIII was studied in isolated perfused Malpighian tubules of the yellow fever mosquito, Aedes aegypti. Peritubular leucokinin-VIII (1 microM) decreased the transepithelial resistance from 11.2 to 2.6 kOmega. cm, lowered the transepithelial voltage from 42.8 to 2.7 mV, and increased transepithelial Cl(-) diffusion potentials 5.1-f...
متن کاملThe dependence of electrical transport pathways in Malpighian tubules on ATP.
The relationship between the intracellular ATP concentration [ATP](i) and the electrical properties of principal cells was investigated in Malpighian tubules of the yellow fever mosquito, Aedes aegypti. Under control conditions, [ATP](i) was 0.91 mmol l(-1), the input resistance of the principal cell (R(pc)) was 334.1 k Omega, and the basolateral membrane was marked by a large K(+)-conductance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 10 شماره
صفحات -
تاریخ انتشار 2004